Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate whether Alfvénic fluctuations (AFs) can affect the structure of magnetic ejecta (ME) within interplanetary coronal mass ejections (ICMEs). We study an ICME observed on 2001 December 29 at 1 au by the Advanced Composition Explorer (ACE) and Wind, at a total angular separation of ~0.8 degree (~0.014 au). We focus on the correlation and complexity of its magnetic structure measured between two spacecraft in association with large-amplitude AFs. The Alfvénicity of the ME is investigated in terms of the residual energy and cross helicity of fluctuations. We find that as for the event of interest, large-amplitude AFs occur in the rear region of the ME at both Wind and ACE with a duration of about 6 hr. We compare the correlation of the magnetic field strength and vector components measured between Wind and ACE, and investigate complexity in terms of the magnetic hodograms. The region showing AFs is found to be associated with a decreased correlation of the magnetic field components and an increased complexity of the ME magnetic configuration detected at ACE and Wind, which may be due to the fact that the two spacecraft crossing the same ME along different trajectories likely sampled AFs in different oscillation phases. Combining multipoint in situ measurements and remote-sensing observations of the ICME source region, we further discuss different potential sources of the AFs.more » « lessFree, publicly-accessible full text available January 8, 2026
-
Abstract A fundamental property of coronal mass ejections (CMEs) is their radial expansion, which determines the increase in the CME radial size and the decrease in the CME magnetic field strength as the CME propagates. CME radial expansion can be investigated either by using remote observations or by in situ measurements based on multiple spacecraft in radial conjunction. However, there have been only few case studies combining both remote and in situ observations. It is therefore unknown if the radial expansion in the corona estimated remotely is consistent with that estimated locally in the heliosphere. To address this question, we first select 22 CME events between the years 2010 and 2013, which were well observed by coronagraphs and by two or three spacecraft in radial conjunction. We use the graduated cylindrical shell model to estimate the radial size, radial expansion speed, and a measure of the dimensionless expansion parameter of CMEs in the corona. The same parameters and two additional measures of the radial-size increase and magnetic-field-strength decrease with heliocentric distance of CMEs based on in situ measurements are also calculated. For most of the events, the CME radial size estimated by remote observations is inconsistent with the in situ estimates. We further statistically analyze the correlations of these expansion parameters estimated using remote and in situ observations, and discuss the potential reasons for the inconsistencies and their implications for the CME space weather forecasting.more » « less
-
Abstract Coronal mass ejections (CMEs) are large-scale eruptions with a typical radial size at 1 au of 0.21 au but their angular width in interplanetary space is still mostly unknown, especially for the magnetic ejecta (ME) part of the CME. We take advantage of STEREO-A angular separation of 20°–60° from the Sun–Earth line from 2020 October to 2022 August, and perform a two-part study to constrain the angular width of MEs in the ecliptic plane: (a) we study all CMEs that are observed remotely to propagate between the Sun–STEREO-A and the Sun–Earth lines and determine how many impact one or both spacecraft in situ, and (b) we investigate all in situ measurements at STEREO-A or at L1 of CMEs during the same time period to quantify how many are measured by the two spacecraft. A key finding is that out of 21 CMEs propagating within 30° of either spacecraft only four impacted both spacecraft and none provided clean magnetic cloud-like signatures at both spacecraft. Combining the two approaches, we conclude that the typical angular width of an ME at 1 au is ∼20°–30°, or 2–3 times less than often assumed and consistent with a 2:1 elliptical cross section of an ellipsoidal ME. We discuss the consequences of this finding for future multi-spacecraft mission designs and for the coherence of CMEs.more » « less
-
Magnetic flux ropes manifest as twisted bundles of magnetic field lines. They carry significant amounts of solar mass in the heliosphere. This paper underlines the need to advance our understanding of the fundamental physics of heliospheric flux ropes and provides the motivation to significantly improve the status quo of flux rope research through novel and requisite approaches. It briefly discusses the current understanding of flux rope formation and evolution, and summarizes the strategies that have been undertaken to understand the dynamics of heliospheric structures. The challenges and recommendations put forward to address them are expected to broaden the in-depth knowledge of our nearest star, its dynamics, and its role in its region of influence, the heliosphere.more » « less
-
This perspective paper brings to light the need for comprehensive studies on the evolution of interplanetary coronal mass ejection (ICME) complexity during propagation. To date, few studies of ICME complexity exist. Here, we define ICME complexity and associated changes in complexity, describe recent works and their limitations, and outline key science questions that need to be tackled. Fundamental research on ICME complexity changes from the solar corona to 1 AU and beyond is critical to our physical understanding of the evolution and interaction of transients in the inner heliosphere. Furthermore, a comprehensive understanding of such changes is required to understand the space weather impact of ICMEs at different heliospheric locations and to improve on predictive space weather models.more » « less
-
Abstract We present an analysis of in situ and remote-sensing measurements of a coronal mass ejection (CME) that erupted on 2021 February 20 and impacted both the Solar TErrestrial RElations Observatory (STEREO)-A and the Wind spacecraft, which were separated longitudinally by 55°. Measurements on 2021 February 24 at both spacecraft are consistent with the passage of a magnetic ejecta (ME), making this one of the widest reported multispacecraft ME detections. The CME is associated with a low-inclined and wide filament eruption from the Sun’s southern hemisphere, which propagates between STEREO-A and Wind around E34. At STEREO-A, the measurements indicate the passage of a moderately fast (∼425 km s−1) shock-driving ME, occurring 2–3 days after the end of a high speed stream (HSS). At Wind, the measurements show a faster (∼490 km s−1) and much shorter ME, not preceded by a shock nor a sheath, and occurring inside the back portion of the HSS. The ME orientation measured at both spacecraft is consistent with a passage close to the legs of a curved flux rope. The short duration of the ME observed at Wind and the difference in the suprathermal electron pitch-angle data between the two spacecraft are the only results that do not satisfy common expectations. We discuss the consequence of these measurements on our understanding of the CME shape and extent and the lack of clear signatures of the interaction between the CME and the HSS.more » « less
An official website of the United States government
